Each of the six faces on a cube has a different digit (0 to 9) written on it; the same is done to a second cube. By placing the two cubes side-by-side in different positions we can form a variety of 2-digit numbers.
For example, the square number 64 could be formed:
In fact, by carefully choosing the digits on both cubes it is possible to display all of the square numbers below one-hundred: 01, 04, 09, 16, 25, 36, 49, 64, and 81.
For example, one way this can be achieved is by placing {0, 5, 6, 7, 8, 9} on one cube and {1, 2, 3, 4, 8, 9} on the other cube.
However, for this problem we shall allow the 6 or 9 to be turned upside-down so that an arrangement like {0, 5, 6, 7, 8, 9} and {1, 2, 3, 4, 6, 7} allows for all nine square numbers to be displayed; otherwise it would be impossible to obtain 09.
In determining a distinct arrangement we are interested in the digits on each cube, not the order.
{1, 2, 3, 4, 5, 6} is equivalent to {3, 6, 4, 1, 2, 5}
{1, 2, 3, 4, 5, 6} is distinct from {1, 2, 3, 4, 5, 9}But because we are allowing 6 and 9 to be reversed, the two distinct sets in the last example both represent the extended set {1, 2, 3, 4, 5, 6, 9} for the purpose of forming 2-digit numbers.
How many distinct arrangements of the two cubes allow for all of the square numbers to be displayed?
在一个立方体的六个面上分别标上不同的数字(从0到9),对另一个立方体也如法炮制。将这两个立方体按不同的方向并排摆放,我们可以得到各种各样的两位数。
例如,平方数64可以通过这样摆放获得:
事实上,通过仔细地选择两个立方体上的数字,我们可以摆放出所有小于100的平方数:01、04、09、16、25、36、49、64和81。
例如,其中一种方式就是在一个立方体上标上{0, 5, 6, 7, 8, 9},在另一个立方体上标上{1, 2, 3, 4, 8, 9}。
在这个问题中,我们允许将标有6或9的面颠倒过来互相表示,只有这样,如{0, 5, 6, 7, 8, 9}和{1, 2, 3, 4, 6, 7}这样本来无法表示09的标法,才能够摆放出全部九个平方数。
在考虑什么是不同的标法时,我们关注的是立方体上有哪些数字,而不关心它们的顺序。
{1, 2, 3, 4, 5, 6}等价于{3, 6, 4, 1, 2, 5}
{1, 2, 3, 4, 5, 6}不同于{1, 2, 3, 4, 5, 9}但因为我们允许在摆放两位数时将6和9颠倒过来互相表示,这个例子中的两个不同的集合都可以代表拓展集{1, 2, 3, 4, 5, 6, 9}。
对这两个立方体有多少中不同的标法可以摆放出所有的平方数?
解题
我发现这个翻译我理解不透
在两个六面体上面涂:0-9的数字,主要这里有10个数字,只用其中6个图,两个六面体涂的数字可以不一样的,6可以当9用,9可以当6用。
两个六面体上面的数字能组合成:1-9的平方:01 04 09 16 25 36 49 64 81 ,求这样的涂法有多少种?
骰子说成六面体还吊的。
0-9 十个数 取出6个 就是一个骰子的涂法。
先组合出涂法的种类。
再判断是否能组成1-9的平方
# coding=gbkimport time as time from itertools import combinations def run(): dice=list(combinations([0,1,2,3,4,5,6,7,8,6],6)) ans = 0 for i1,d1 in enumerate(dice): for d2 in dice[i1:]: if valid(d1,d2) == True: ans +=1 print ans def valid(c1,c2): squares=[(0,1),(0,4),(0,6),(1,6),(2,5),(3,6),(4,6),(8,1)] return all(x in c1 and y in c2 or x in c2 and y in c1 for x,y in squares)t0 = time.time()run() t1 = time.time()print "running time=",(t1-t0),"s"
# 1217
# running time= 0.0620000362396 s